

GNSS Android Driver

USER MANUAL

WWW.UNICORE.COM

Data

uDriver

GNSS Android Driver

Copyright© 2009-2025, Unicore Communications, Inc.

 subject to change without notice.

Foreword
Scope

This manual provides information about the porting guide, configurations, and firmware upgrade
methods of Unicore’s GNSS driver (uDriver) for Android devices.

Target Readers

This document applies to technicians who possess expertise on GNSS receivers.

Statement

Legal right notice

This manual provides information and details on the products of Unicore Communication, Inc.
(“Unicore”) referred to herein.

All rights, title and interest to this document and the information such as data, designs, layouts
contained in this manual are fully reserved, including but not limited to the copyrights, patents,
trademarks and other proprietary rights as relevant governing laws may grant, and such rights may
evolve and be approved, registered or granted from the whole information aforesaid or any part(s) of it or
any combination of those parts.

Unicore holds the trademarks of “和芯星通”, “Unicore”, “UNICORECOMM" and other trade name,
trademark, icon, logo, brand name and/or service mark of Unicore products or their product serial
referred to in this manual (collectively “Unicore Trademarks”).

This manual or any part of it, shall not be deemed as, either expressly, implied, by estoppel or any other
form, the granting or transferring of Unicore rights and/or interests (including but not limited to the
aforementioned trademark rights), in whole or in part.

Disclaimer

The information contained in this manual is provided “as is” and is believed to be true and correct at the
time of its publication or revision. This manual does not represent, and in any case, shall not be
construed as a commitments or warranty on the part of Unicore with respect to the fitness for a
particular purpose/use, the accuracy, reliability and correctness of the information contained herein.

Information, such as product specifications, descriptions, features and user guide in this manual, are
subject to change by Unicore at any time without prior notice, which may not be completely consistent
with such information of the specific product you purchase.

1

af://n33
af://n35
af://n40

Should you purchase our product and encounter any inconsistency, please contact us or our local
authorized distributor for the most up-to-date version of this manual along with any addenda or
corrigenda.

2

Version Revision History Date

R1.0 First Release. Dec. 2024

R1.2.1

Updated uDriver Introduction.
Updated the following contents in uDriver Porting Guide:
(1) Added the required/optional modules in Modify the Makefile.
(2) Specified the required/optional configurations in Configure uDriver.
Updated the following contents in uDriver Application Notes:
(1) Updated Table 3-1 System Properties.
(2) Added I2C Configuration.
(3) Updated AGNSS/NTRIP Configuration.

May 2025

Revision History

3

uDriver version: v1.2.1

af://n18

uDriver Introduction
uDriver is an Android open-source driver demo compatible with Unicore GNSS products. By integrating
this driver, users can achieve functions such as reading, decoding GNSS data and configuring GNSS
receivers on their Android devices.

uDriver is provided as a demo program, and users can adjust its working logic to align with their specific
requirements.

It should be noted that the operational stability of uDriver is closely related to the Android system
environment and hardware conditions. Before mass production, please conduct thorough testing and
verification across all relevant scenarios.

4

af://n0

Modules Functions Required/Optional

libunicore Unicore driver library Required

gnss_service GNSS HAL driver Required

sensors_service SENSOR HAL driver Optional

unicore_service Data injection Optional

uDriver Porting Guide
This chapter describes the operational steps involved in the porting of uDriver.

2.1 Development Environment

This document is based on the AOSP development environment for the RB5 platform. If other platforms
are used, please modify the corresponding files during porting. For porting examples, refer to the content
in unicore_gnss/Documentation/Porting.

2.2 Disable the Old Driver

If the target system has integrated other GNSS drivers, disable the conflicting driver according to the
methods provided by the platform vendor.

2.3 Copy the uDriver Source Code

Copy the unicore_gnss folder to the Android vendor/unicore_gnss directory.

2.4 Port the Device Files

2.4.1 Modify the Makefile

Find the Makefile in the device directory of the source code.

Add modules such as libunicore.so, gnss_service, sensors_service, and unicore_service.

Modify the HAL driver version according to rb5.mk.sample.

Table 2-1 Modules and Functions

5

af://n5
af://n7
af://n9
af://n11
af://n13
af://n14

2.4.2 Modify the ueventd File

Add the GNSS device node. Modify the device name to match the one in use. For specific details, refer to
ueventd.common.rc.sample.

Note

The device name in the ueventd file must correspond to that defined in the unicore_config.h.

Ensure that the SEPOLICY is properly configured.

2.4.3 Add SEPOLICY

Integrate the unicore_gnss/sepolicy folder into the system's SELinux rules, and ensure the added
SEPOLICY is valid. For specific details, refer to BoardConfigcommon.mk.sample.

2.5 Configure uDriver

After the porting operations, uDriver can be compiled successfully and launched normally. Before
uDriver can function correctly, configuration steps are needed. Among these, Configure GNSS Receiver
Communication Interface and Configure GNSS Module Type are required configurations and checks.
Others are optional.

2.5.1 Configure GNSS Receiver Communication Interface

(1) Modify GNSS Communication Device Node

First, confirm the device node (e.g., /dev/ttyUSB0), then modify the macros related to the serial port
parameters such as DEFAULT_GPS_DEVICE.

HIDL version
#unicore_hidl_gnss_version := 2.1
#unicore_hidl_sensors_version := 2.1

AIDL version
unicore_aidl_gnss_version := 3
unicore_aidl_sensors_version := 2

/dev/ttyUSB0 0660 gps root #GNSS module communication interface

BOARD_SEPOLICY_DIRS += vendor/unicore_gnss/sepolicy

6

af://n41
af://n51
af://n54
af://n56

(2) Check and Modify SEPOLICY Configuration

Check the secontext of the GNSS communication port and grant uDriver permission to operate the serial
port. The following files need to be checked:

unicore_gnss/sepolicy/file_contexts

unicore_gnss/sepolicy/device.te

unicore_gnss/sepolicy/hal_gnss_unicore.te

(3) Check and Modify uevent Configuration

Refer to the Modify the ueventd File procedures to ensure the GNSS communication port is configured
with correct user and permissions.

2.5.2 Configure GNSS Module Type

Set the CMDSET_DEFAULT in the configuration file to match the product type in use. The default
configuration is CMDSET_NPL.

2.5.3 [Optional] Configure the Debug Switch

To print debugging information, enable the GPS_DEBUG macro in the configuration file. Disable it if not
needed.

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

#define DEFAULT_GPS_DEVICE "/dev/ttyUSB0"
#define WORKING_BAUD 460800

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

enum {
 CMDSET_UNKNOWN = 0,
 CMDSET_NPL = 1, //standard-precision products
 CMDSET_HPL = 2, //high-precision products
 CMDSET_DEFAULT = CMDSET_NPL, //set to match the product type in use
};

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

#define GPS_DEBUG

7

af://n71
af://n74

2.5.4 [Optional] Configure AGNSS and DGNSS Data Injection

To configure the AGNSS and DGNSS data injection, refer to AGNSS/NTRIP Configuration in uDriver
Application Notes.

2.5.5 [Optional] Configure I2C

To configure the I2C interface, refer to I2C Configuration in uDriver Application Notes.

2.6 Porting Completed

After the uDriver porting is completed, install UGPSTest APP or other positioning software for testing.

8

af://n77
af://n79
af://n81

System
Properties

Descriptions
Source Code Config
Items

Config File Config Values

gnss_port GNSS device node
DEFAULT_GNSS
_DEVICE

unicore_con
fig.h

/dev/ttyUSB0

gnss_baud
Working baud rate
of the firmware

WORKING_BAUD
unicore_con
fig.h

115200, etc.

gnss_baud_
default

Factory settings of
the firmware baud
rate

FACTORY_BAUD
unicore_con
fig.h

115200, etc.

gnss_debug
Status indicator
(reserved)

N/A N/A N/A

gnss_injectio
n

Assistance data
injection

GNSS_INJECTION
unicore_con
fig.h

agnss, etc.

gnss_bl_
download_ba
ud

Bootloader
download
baud rate during
upgrade

BOOTLOADER
_DOWNLOAD
_BAUDRATE

unicore_con
fig.h

115200, etc.

uDriver Application Notes
This chapter describes the uDriver configurations, including system properties, interface configurations,
AGNSS/NTRIP configuration, firmware upgrade, etc.

3.1 System Properties

The uDriver configuration items can be modified not only in the configuration file but also via system
properties.

System properties have priority over the configuration file, i.e.

The HAL will prioritize using the settings defined in system properties.

If no system properties are found, the HAL will use the default settings in the configuration file.

The prefix of the system properties is persist.vendor.unicore.

Table 3-1 System Properties

9

af://n83
af://n85

System
Properties

Descriptions
Source Code Config
Items

Config File Config Values

gnss_fw_
download_ba
ud

Firmware download
baud rate during
upgrade

FW_DOWNLOAD
_BAUDRATE

unicore_con
fig.h

115200, etc.

log_level Log output level N/A N/A

VERBOSE
DEBUG
INFO
WARN
ERROR
FATAL

log_toconsole logcat switch N/A N/A true/false

log_tofile Log file switch N/A N/A true/false

gnss_version
Firmware version
of the GNSS
receiver

N/A N/A
Driver
configuration

gnss_hal_vers
ion

uDriver HAL
verision

N/A N/A
Driver
configuration

3.2 TCP/IP Interface Configuration

The uDriver HAL listens on the local port by default for debugging interactions and raw data output.

The number of supported clients is defined by the NR_CLIENTS, which is not recommended to be
modified unless necessary. When the number of connected clients exceeds the limit value, new
connections will replace the first client already connected (client0).

The port uses a socket-based connection. Socket clients can transparently transmit commands to the
GNSS module. For example,

Send the command “$pdtinfo" to query version information.

Send the command “~CONFIG COM1 115200” (not starting with $) to configure the GNSS module.

Address: 127.0.0.1
Port: 5744

Table 3-2 Supported Commands

10

af://n174

Commands Parameters Descriptions

halver N/A Query the driver version

rcv.read[option]
"none"
"all"

Disable data forwarding
Enable data forwarding

putfile <name> <size>
name: "blu.pkg" "fw.pkg"
size: file size

Send files (for upgrade only)

upgrade N/A Start upgrade

debuglog [option]
“on”
"off"

Enable or disable debuglog,
for transparent transmission of driver logs

3.3 AGNSS/NTRIP Configuration

The assistance data injection is defined in the libunicore directory, and the parameters are described as
follows:

AGNSS and Ntrip accounts are configured in unicore_gnss/unicore_service/unicore_service.conf, which
will be automatically copied to the Android /vendor/etc/ directory after successful compilation.

3.4 GNSS Module Configuration

If you need to configure the log list or send commands to the GNSS module, follow the steps below:

1. Enable the GNSS_INIT_HOOK macro defined in unicore_config.h.

2. Input the log list and commands to be sent during the startup of the module in the configuration
file: unicore_gnss/libunicore/unicore_gnss.conf.

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

// Disable data injection.
#define GPS_INJECTION "none"
// Inject Ntrip data through ttyUSB0 and set the baud rate to 460800.
#define GPS_INJECTION "ntrip /dev/ttyUSB0 460800"
// Inject Ntrip data through the default port.
#define GPS_INJECTION "ntrip"
// Inject ephemerides through the default port (see gps_port configuration).
// unicore_service uses http protocol to download ephemerides from rx-networks.cn; https
protocol is not supported.
#define GPS_INJECTION "agnss"

11

af://n210
af://n214

The configuration file will be automatically copied to the Android /vendor/etc/ directory after successful
compilation.

3.5 I2C Configuration

uDriver supports communication with the GNSS module via I2C polling mode. To enable this, follow the
configurations below:

(1) Modify the GNSS Communication Interface

(2) If you need to configure the GNSS module's power control or reset via GPIO, follow the steps below:

1. In the unicore_gnss/libunicore/pwrctl/pwrctl.cpp file, modify the power control to pwrctl_gpio.cpp.
In the pwrctl_gpio.cpp file, configure the specific GPIO pins.

2. In the ueventd.common.rc.sample file, modify the user of the communication interface to root.

3. In the unicore_gnss/libunicore/libunicore.rc file, modify the user of the /data/vendor/unicore and
log folder to root.

4. In the rc files of gnss_service, sensors_service, unicore_service, modify the user to root.

3.6 Firmware Upgrade Configuration

uDriver supports the GNSS module for firmware upgrade. The baud rates need to be configured before
upgrade.

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

#define DEFAULT_GNSS_DEVICE "/dev/i2c-1"

//Location of the config file: unicore_gnss/libunicore/include/libunicore/unicore_config.h

#define BOOTLOADER_DOWNLOAD_BAUDRATE 460800
#define FW_DOWNLOAD_BAUDRATE 460800

12

af://n222
af://n236

Figure 4-1 Modify the Baud Rates

Firmware Upgrade
This chapter gives instructions on how to upgrade Unicore’s GNSS modules. It takes the standard-
precision module UM621 as an example and also applies to high-precision modules.

4.1 Preparations

Before upgrade, prepare the bootloader and firmware. For example:

Bootloader: FB2S_bootloader_build6435_update_115200.pkg

Firmware: UM621_R6.0.0.0Build3816_mfg.pkg

Modify the bootloader download baud rate and firmware download baud rate in the file
unicore_gnss\hal\libgps\uc6226_hook.h, as shown in Figure 4-1.

After the modification, recompile the gps.default.so library. Update the /vendor/lib64/hw/gps.default.so
in the Android device.

There are two methods to upgrade the GNSS module:

Upgrade by UGPSTest APP,

Upgrade by socket.

Note

Before upgrade, ensure that the GNSS module can communicate with uDriver normally, otherwise
uDriver cannot trigger the soft start of the GNSS module.

4.2 Upgrade by UGPSTest APP

[Steps]

To upgrade the GNSS module using the UGPSTest APP, follow the steps below, as shown in Figure 4-2.

1. Open the UGPSTest APP.

2. Click “Upgrade”, as shown by the red arrow 1.

3. Select the paths of bootloader and firmware respectively, as shown by the red arrows 2 and 3.

4. Click “升级”, as shown by the red arrow 4.

13

af://n239
af://n241
af://n261

Figure 4-2 Upgrade Steps

When the module is being upgraded, a progress bar is displayed in the window, as shown in Figure 4-3.

14

Figure 4-3 Progress Bar

Figure 4-4 Upgrade Success

If the upgrade is successful, the window will display “success”, as shown in Figure 4-4.

After a successful upgrade, the module will reboot automatically. After waiting for a period of time, the
UGPSTest APP will regain positioning data. (If the baud rate of the firmware does not match that of the
serial port configured by uDriver, users need to modify the baud rate of the serial port. Only then will the
UGPSTest APP regain positioning data.)

Note

The upgrade logs can be viewed via Logcat or in the /data/vendor/unicore/log/last_update_log file.

4.3 Upgrade by Socket

Background: uDriver listens on the local port by default for debugging interactions.

Address: 127.0.0.1

Port: 5744

Table 4-1 Upgrade Commands Supported

15

af://n285

Commands Parameters Descriptions

putfile
<name>
<size>

name: "blu.pkg" "fw.pkg"
size: the actual size of the
bootloader and firmware

Specify the file name and file size of the
bootloader and firmware.

upgrade N/A Start the upgrade.

[Steps]

 To upgrade the GNSS module by means of socket, follow the steps below:

1. Create a local TCP client and connect it to the server of uDriver via the socket port (server address:
127.0.0.1, port: 5744).

2. The client sends "putfile <name> <size>" command to the server.

(1) For bootloader, the client first sends "putfile blu.pkg <size>", then sends the bootloader file to the
server (This step is required and will trigger a copy operation).

(2) For firmware, the client first sends "putfile fw.pkg <size>", then sends the firmware file to the
server (This step is required and will trigger a copy operation).

3. The client sends the "upgrade" command to the server to start the upgrade process.

4. After a successful upgrade, disconnect the client.

Note

During the upgrade process, the server will provide timely feedback to the client about the upgrade
process, which can be monitored by reading the socket port.

16

和芯星通科技（北京）有限公司

Unicore Communications, Inc.

北京市海淀区丰贤东路 7 号北斗星通大厦三层

F3, No.7, Fengxian East Road, Haidian, Beijing, P.R.China,

100094
www.unicore.com

Phone: 86-10-69939800

Fax: 86-10-69939888

info@unicorecomm.com

www.unicore.com

	uDriver Introduction
	uDriver Porting Guide
	Development Environment
	Disable the Old Driver
	Copy the uDriver Source Code
	Port the Device Files
	Modify the Makefile
	Modify the ueventd File
	Add SEPOLICY

	Configure uDriver
	Configure GNSS Receiver Communication Interface
	Configure GNSS Module Type
	[Optional] Configure the Debug Switch
	[Optional] Configure AGNSS and DGNSS Data Injection
	[Optional] Configure I2C

	Porting Completed

	uDriver Application Notes
	System Properties
	TCP/IP Interface Configuration
	AGNSS/NTRIP Configuration
	GNSS Module Configuration
	I2C Configuration
	Firmware Upgrade Configuration

	Firmware Upgrade
	Preparations
	Upgrade by UGPSTest APP
	Upgrade by Socket

